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To quantitatively predict the mechanical response and mechanically induced remodeling of red blood cells,
we developed a multiscale method to correlate distributions of internal stress with overall cell deformation.
This method consists of three models at different length scales: in the complete cell level the membrane is
modeled as two distinct layers of continuum shells using finite element method (Level III), in which the
skeleton-bilayer interactions are depicted as a slide in the lateral (i.e., in-plane) direction (caused by the
mobility of the skeleton-bilayer pinning points) and a normal contact force; the constitutive laws of the inner
layer (the protein skeleton) are obtained from a molecular-based model (Level IT); the mechanical properties of
the spectrin (Sp, a key component of the skeleton), including its folding/unfolding reactions, are obtained with
a stress-strain model (Level I). Model verification is achieved through comparisons with existing numerical and
experimental studies in terms of the resting shape of the cell as well as cell deformations induced by micropi-
pettes and optical tweezers. Detailed distributions of the interaction force between the lipid bilayer and the
skeleton that may cause their dissociation and lead to phenomena such as vesiculation are predicted. Specifi-
cally, our model predicts correlation between the occurrence of Sp unfolding and increase in the mechanical
load upon individual skeleton-bilayer pinning points. Finally a simulation of the necking process after

skeleton-bilayer dissociation, a precursor of vesiculation, is conducted.
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I. INTRODUCTION

Among all types of cells, erythrocyte (red blood cell, or
RBC) possesses one of the simplest and best characterized
molecular architectures. Without a nucleus, a mature eryth-
rocyte contains a cytosol enclosed within a highly flexible
yet surprisingly strong membrane. Essential to its structural
integrity and stability is this composite membrane consisting
of a lipid bilayer supported from inside by a protein skeleton.
The connection between the skeleton and the lipid bilayer is
achieved at pinning points made of transmembrane proteins.

Despite extensive investigations in the past few decades,
there are still many remaining questions about the mechanics
of erythrocyte. For example, it is still not fully understood
what determines its resting shape (this is the first of eight
mysteries about RBC proposed by Hoffman [1]). Herein a
pivotal issue is the effect of the protein skeleton upon cell
shape. Although a stomatocyte-discocyte-echinocyte se-
quence was obtained numerically based on the bilayer-
coupled hypothesis [2] and the stabilizing function of the
skeleton in maintaining the biconcave shape was explored
[3], the relaxed reference shape of the skeleton remains con-
troversial. Indeed, if a spherically relaxed skeleton is applied,
to obtain the biconcave shape the elasticity of the skeleton
must be significantly reduced [4]. Otherwise, nonspherical
(e.g., biconcave [5] or oblate [2,3]) relaxed shapes must be
assumed. These are beyond the state-of-the-art knowledge
about RBC. Moreover, much is unknown about responses of
the cell in large deformations. One remaining issue is the
strength of the skeleton-bilayer linkage [6]. Under suffi-
ciently large dissociation forces this linkage may rupture,
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causing cell remodelings such as vesiculation. The recent
understanding is based upon the adhesion energy theory [7].
Being essentially phenomenological, this theory does not of-
fer much insight upon the molecular origin of the lipid-
skeleton dissociation. In large deformations, the effects of Sp
unfolding [8] and dissociation of Sp head-to-head connec-
tions [9] upon the mechanical behavior of the cell are also
unexplored.

These problems are important not only because RBC
serves as a model system for general cell biomechanics, but
also because many diseases are related to defects of the in-
terprotein and protein-to-lipid linkages in the cell membrane
[10]. Some of these defects will change the mechanical prop-
erties of the cell and its resting shape. Others may induce
structural failures of the cell under large loading. For ex-
ample, in hereditary elliptocytosis (HE), the weakening of
the skeleton network reshapes the cell to be elliptical. Cells
with abnormal shapes are often destroyed by the spleen,
leading to anemia. Mechanically induced cell damage is
more pronounced within artificially created flow fields asso-
ciated with mechanical circulatory support systems [11].

To pave the way for a molecular-level understanding of
mechanical responses of erythrocytes as well as the underly-
ing conditions for mechanically triggered structural remodel-
ing and failure, it is vital to quantitatively characterize the
mechanical forces acting on the interprotein and protein-to-
lipid linkages within the membrane. Toward this end there is
also the need to describe the process whereby the protein
skeleton, while vertically connected to the lipid bilayer, al-
ters its lateral morphology and density as it deforms. Thus
the coupled phenomena of skeletal rearrangements during
deformations and skeleton-bilayer interaction are of first or-
der importance to overall mechanical response as well as
remodeling processes such as vesiculation, which involves a
separation of the skeleton from the bilayer, and related pro-
tein sorting events.
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FIG. 1. (Color online) Schematic of a JC.

In this study we explore a finite element method (FEM) to
simulate the membrane as two distinct layers. Although en-
ergy minimization methods have been successfully used in
membrane mechanics [2,4,12], FEM is still a good candidate
with many advantages, e.g., the robustness for contact/
adhesion calculation and time-dependent problems, the high
computational efficiency, as well as the simplicity in cou-
pling with other methods [5,13,14]. Unlike the coarse-
grained models [4,12], in our model we explicitly compute
the interaction between the bilayer and the skeleton. Since
we aim at molecular-detailed prediction of force distribution
within the cell with maximum accuracy at large deforma-
tions, we use a multiscale representation that accounts for a
molecular-level understanding of the Sp/actin junctional
complex (JC) in the protein skeleton and the force-induced
Sp unfolding. A specific aim of this study is to evaluate the
normal association or dissociation force between the lipid
bilayer and the protein skeleton—a sufficiently large disso-
ciation force may trigger phenomena such as vesiculation
and tether formation (in both cases segregation of the skel-
eton from the bilayer is observed) [6,15-18].

This paper is organized as follows. In the next section we
summarize the development of a set of multiscale models,
including a constitutive model of the Sp, a molecular-
detailed model of the protein skeleton, and a double-layer
FEM model of the complete cell. This set of models is then
applied to predict the resting shape and simulate two experi-
ments, micropipette aspiration and cell stretching with opti-
cal tweezers. In these studies, we not only compare our pre-
dictions with benchmark results, but also document the
contact force between the bilayer and the skeleton as well as
the postdissociation behavior. Finally, conclusions and dis-
cussion are provided.

II. PROBLEM DESCRIPTION

An erythrocyte possesses a thin skeletal network coupled
with a lipid bilayer. The network is composed primarily of
flexible Sp dimers and relatively rigid actin protofilaments,
and structurally organized into approximately 33 000 JCs. As
shown in Fig. 1, each JC contains a central piece of actin
protofilament as well as (up to) six Sp dimers. Horizontally,
the JCs are linked via the Sp dimer/tetramer reaction (i.e., the
head-to-head association that connects two dimers into a tet-
ramer). Vertically, this membrane skeleton is connected to

PHYSICAL REVIEW E 81, 031904 (2010)

actin
(a) (b) protofilament

outer layer
(lipid bilay,

g 0000827
' folded domains

s “’M
domain unfolding

FIG. 2. Multiscale models of an erythrocyte: (a) the double-
layer continuum shell model (Level III), (b) the molecular-detailed
JC model (Level II. For clarity, the secondary connections with
glycophrin C/protein 4.1 are not shown), and (c) the constitutive
model of a Sp including the folding/unfolding reactions (Level I).
(b) and (c) are modified from [8].

the lipid bilayer at pinning points called suspension com-
plexes (SC). Each SC consists of ankyrin, protein 4.2, and
band 3 (a transmembrane protein). In addition, the actin
protofilaments are also connected to the lipid bilayer through
protein 4.1 and glycophorin C (another transmembrane pro-
tein). This linkage is usually referred to as the secondary
connection. Both band 3 and glycophorin C can drift within
the lipid bilayer, rendering a horizontal mobility of the
skeleton-bilayer connection.

Inter- and intraprotein reactions are essential to the struc-
tural integrity and mechanical response of the cell [19]. In
the erythrocyte membrane there exists a dynamic equilibrium
as a result of dynamic balances between associated and dis-
sociated states of many interprotein and protein-to-lipid link-
ages. These balances are directly affected by mechanical
loads. The connections that may rupture under mechanical
loads include: the head-to-head association between Sp
dimers that links the neighboring JCs [20,21], the band
3—ankyrin “bridge” that is the connection between the SC
and the lipid bilayer [22], the protein 4.1-band 3 connection
[23], and the band 3-lipid bilayer connection [18]. These
dissociations will dramatically change the mechanical prop-
erties of the membrane, causing structural instability and
even permanent damage. For example, as suggested by mi-
cropipette aspirations and flow channel experiments, the rup-
ture of the band 3-lipid linkage will cause detachment of the
skeleton from the lipid bilayer, leading to creation of vesicles
(vesiculation) or tethers [16,18]. Vesiculation is associated
with membrane loss, and usually with changes in the shape
and physiology of the cell. To understand conditions related
with these cell remodelings, numerical models are required
to correlate cell deformations to the mechanical loads on
these connections.

II1. MULTISCALE FORMULATIONS

A multiscale model is illustrated in Fig. 2. At the complete
cell level (Level 1II) [Fig. 2(a)], the membrane is modeled as
two vertically connected layers (vertical to the mean plane of
the membrane), the lipid bilayer and the protein skeleton.
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Both layers are modeled as continuum shells. The constitu-
tive properties of the inner layer (the protein skeleton) are
evaluated by using a molecular-detailed model of a JC
(Level II). As depicted in Fig. 2(b), in this JC description the
skeleton is composed of a quasihexagonal network of
roughly 6 Sp dimers (the “spokes”) joined to an actin
protofilament. Furthermore, we apply a constitutive model
(Level 1) to calculate the tension-strain relation of each Sp
including its folding/unfolding reactions [Fig. 2(c)]. In the
following we provide detailed descriptions for each of these
models.

A. Sp model with folding/unfolding reactions (Level I)

Multidomain proteins such as Sp can undergo overstretch-
ing due to unfolding of domains or multiple repeats [24-28]
[Fig. 2(c)]. As illustrated in AFM experiments, the transient
force-extension curve of Sp displays a trademark sawtooth
pattern related to unfolding of the domains [24]. Each peak
in this curve corresponds to the unfolding of one or more
than one domain [26]. The exact characteristic of this curve
is dependent on the rate of extension. With an infinitely slow
extension rate, the quasistatic (equilibrium) force-extension
curve contains a strain-stiffening part before the first unfold-
ing event. Afterward, a distinctive plateau appears, where the
extension force remains almost a constant due to the succes-
sive unfolding of domains.

Based on this description, we have developed a dynamic/
quasistatic model of a Sp [8]. In this model, we consider a Sp
with N domains stretched by a force F. When there is Ny
folded domains and N,, unfolded domains in a Sp (note that
N=N,+N), the projected end-to-end distance x (i.e., the
end-to-end distance projected to the direction of F) is given
as x=Npx+N,x,, where x; and x, are the projected exten-
sions of folded and unfolded domains, respectively. Let ¢,
=N,/N, we have

X

R x_L_>
v =0 ¢M>Lf+¢>uL( . (1)

uLf

In the equilibrium state, by considering the balance be-
tween the unfolding and the folding processes via an Arrhen-
ius rate relation we express ¢, as

( (F— Fl/z)AAX*)
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where AAx*:Afou—Aquf, the difference between the ac-
tivation length of the unfolding process and that of the re-
folding process. F, is the force F corresponding to the state
when half of the domains are unfolded. kp is the Boltzmann
constant, and T is the temperature (assumed to be 300 K in
our simulations). With p, and p,, as the persistence lengths of
each domain in folded and unfolded states, respectively,
x;/L; and x,/L, can be evaluated via the wormlike-chain
(WLC) model. Using this model, we have quantitatively re-
produced the experimentally measured force-extension rela-
tion of a Sp [8].
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B. Junctional complex (JC) model (Level II)

Our model of a JC is based upon the three-dimensional
description of a single JC unit by Sung and Vera [29] (also
see [30]) and implemented within the mechanical model of
Zhu et al. [31] and Zhu and Asaro [8]. According to this
depiction (Fig. 1), in a JC the protofilament functions as a
mechanical axis, anchoring three pairs of Sp. Each Sp pair is
arranged in a back-to-back fashion and the force-extension
relation comes from previous Sp model (Level I). The result
is a quasihexagonal network composed of JCs. The dynamic
and quasistatic responses of individual and multiple JCs in-
teracting with the lipid bilayer have been studied via a hybrid
scheme that simulated the response to thermal fluctuations
and applied displacements or stresses [8,31].

C. Complete cell model (Level III)

In the complete cell model, both the lipid bilayer and the
protein skeleton are modeled as continuum shells [Fig. 2(a)].
The elastic properties of the skeleton layer comes from the
JC model (Level II).

Following Evans and Skalak [32], we calculate the con-
stitutive properties of a JC undergoing finite deformations
based upon the strain energy @ stored in the Sp. In this
approach, an arbitrary in-plane deformation is achieved by
stretching along two orthogonal axes, axis 1 and axis 2, with
stretching ratios A; and N\, (A\; =\,). Two independent defor-
mation parameters, @=A\,—1 and B=(\T+\3)/(2\ )~ 1
are also defined. It is seen that « represents area change, and
B a change of aspect ratio or eccentricity. The shear modulus
of the skeleton, u,, is then given as

_ L
Ay Bl

where A is the projected area without deformation occupied
by the JC (i.e., the area of the hexagon formed by the six
SCs). As « is constant, it corresponds to an anisotropic de-
formation. The potential energy stored inside each Sp dimer
is calculated by integrating its internal tension times the ex-
tension, starting from the natural state. ® is then evaluated
by summing up the total potential energy in the six dimers.

s 3)

The isotropic tension 7 in an equibiaxial deformation (8
=constant) can be expressed as (see [32])

- C/A?, (4)
AO Jda B

where the second term corresponds to a steric effect in the

form suggested by [12] (see also [33]), i.e., the compression

of the network causes a repulsive force due to interactions

among components of the protein skeleton. The initial iso-

tropic tension (prestress) at natural state is denoted by 7,

=T|a=0,ﬁz0- The linear area modulus K| is given as

T

:&a

)

s

a=0

Using the single-JC model we performed simulations of
the quasistatic and ensemble-averaged response of a JC in
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in-plane deformations. Thermal fluctuations, which may
have potential impact on local dynamic responses and cause
phenomena such as mode switching [31], are not included in
this simulation. The shear and linear area moduli of the pro-
tein skeleton are extracted by using Egs. (3)—(5).

The lipid bilayer consists of a nearly incompressible flu-
idlike membrane. It therefore possesses large area modulus
and a quite small shear modulus. For numerical stability we
take u;, the shear stiffness of the lipid bilayer, to be a finite
value 10~ uN/m, which is about three orders of magnitude
smaller than that of the protein skeleton. The area stiffness of
the bilayer is taken to be K,=5X 10° uN/m [19].

The mechanical response of the two continuum layers and
their interactions are solved using the finite element method.
Detailed description of this method is in the Appendix.

IV. RESULTS

In the following sections we apply our model to study
problems involving mechanical responses of RBC, including
the resting shapes as well as cell deformations and skeleton-
bilayer interactions in two canonical tests: optical tweezer
stretching and micropipette aspiration.

A. Resting shape

It is well accepted that the resting shapes of RBC are
related to the mechanical properties of the composite mem-
brane consisting of the lipid bilayer and the skeleton net-
work. However, the roles played by each of these compo-
nents are unclear. On the one hand, by washing away the
lipid bilayer using nonionic surfactants, Svoboda er al. [34]
showed that the remaining protein skeleton was no longer
biconcave. On the other hand, in some diseases (e.g., heredi-
tary elliptocytosis) a weakened skeleton network changes the
cell to an elliptical shape. The implication is that both the
skeleton and the lipid bilayer contribute to the resting shape.

Accordingly, an important factor is the relaxed (zero shear
energy) reference state of the protein skeleton. The simplest
choice is to use a spherical shape as the reference state. How-
ever, it was shown that under this assumption the cell rested
at a cup shape [4]. To recover the biconcave shape the elas-
ticity of the skeleton has to be significantly reduced [4]. Al-
though the biconcave shape can be stabilized by using the
biconcave shape itself [5] or an oblate ellipsoidal shape [2,3]
as the relaxed skeleton reference, experiments are needed to
explain why red cells have those nonspherical relaxed skel-
etons.

Using our model, we simulate the resting shapes of RBC
and compare with predictions made in existing studies. We
first neglect the effects of the protein skeleton and study the
dependence of the cell shape upon its internal volume V. By
assuming that the spontaneous curvature Cy=0, we plot the
cell shapes at three different values of V/V,,,,, in Fig. 3
(Viphere is the volume of a sphere with the same surface area
as the cell). It is seen that with our model we can accurately
duplicate the stomatocyte-oblate-prolate sequence and its de-
pendence upon V obtained by Seifert et al. [35].

We then take into account the protein skeleton and re-
simulate the case with pf=5.625 nm, Lf=6.257 nm, k.
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FIG. 3. Resting shapes of a RBC when the lipid bilayer is con-
sidered: (a) stomatocyte (V/V,pe,=0.59), (b) oblate (V/V,pere
=0.65) and (c) prolate (V/V,,.,,=0.8).

=8.3X 1072 J, and Cy=0. Following Li et al. [4], we start
with a spherical shell of radius 3.27 um (which also serves
as the relaxed reference state of the skeleton) and gradually
reduce the volume to 65% of its original value. Instead of a
biconcave shape, a cup shape is obtained [Fig. 4(a)]. After
we reduce the shear stiffness of the skeleton by one hundred
times, biconcave shape is recovered. This is consistent with
the report by Li et al. [4].

To explain the paradox about the shear stiffness of the
skeleton, Li et al. [4] proposed that over large time scales the
skeleton might be fluidic due to remodeling and possesses a
much smaller shear stiffness than measured under finite de-
formation rates. This appears to be reasonable. However, it
fails to explain why weakened skeleton causes dramatic
shape change such as observed in elliptocytosis [at Cy=0,
the biconcave shape is the ground state for u,—0 at
VIVippere=0.65 as demonstrated in Fig. 3(b)].

Alternatively, we find that with some positive spontane-
ous curvature the biconcave shape can be obtained with a
small skeleton shear stiffness. For example, if we assume
that the reduced spontaneous curvature c,=2.6 (c, is the re-
duced spontaneous curvature defined as cy=CyR, and R,
=3.27 pm is the radius of the initial sphere), the biconcave
shape is achieved at a skeleton shear stiffness of 0.4 pN/um
as shown in Fig. 4(b). This is consistent with the behavior of
elliptocytosis because the lipid bilayer with such a positive
spontaneous curvature tends to be prolate if the shear stiff-
ness of skeleton approaches zero due to the weakened skel-
eton, while the small shear stiffness (0.4 pN/um) of a nor-
mal red cell can be rationalized under the theory by Li et al.
[4] (additional evidence can be found in the experimental
work of membrane fluctuation by Peterson et al. [36] and the
theoretical study by Boal et al. [37], both suggesting that the
shear modulus may be considerably smaller than that deter-
mined by micropipette experiments (6—9 pN/um) [38]).

Complete phase diagram with respect to shear stiffness
and spontaneous curvature should be explored further, which
is beyond the scope of this paper.

L

(a) (b)

FIG. 4. Resting shapes of the RBC when both the lipid bilayer
(light color) and the skeleton network (dark color) are considered:
(a) cup shape (cp=0, u,=11 pN/um, V/V,,,,=0.65), (b) bi-
concave shape (cp=2.6, u;=0.4 pN/um, V/V,,,,.=0.65). The
gap between lipid bilayer and skeleton is exaggerated.
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FIG. 5. (a) Cell deformation stretched by the optical tweezers as predicted by our multiscale model (stress-free case). (b) Axial and
transverse diameters of the cell as functions of the stretching force for the stress-free and the prestress cases as compared with experimental
results by Dao et al. [33] (the error bars represent experimental uncertainty).

Through comparisons with benchmark results, the afore-
mentioned simulations confirm the validity and accuracy of
our models (especially the Level IIl FEM model). They have
also demonstrated that additional studies, both theoretical
and experimental, are required to explain the resting shape of
RBC.

In the following we concentrate upon mechanically in-
duced deformations of the cell in two canonical experiments,
optical tweezer stretching and micropipette aspiration. In
these simulations, we consider the bilayer with a spontane-
ous curvature Cy=0 for simplicity and use the initial con-
figuration as the relaxed reference state (shear-free state) of
the skeleton. Following Discher et al. [12], two different
scenarios are considered. In the first scenario the skeleton has

no initial tension inside it (stress-free case with 7,=0). In
this case pf=5.625 nm, Lf=6.257 nm. In the second sce-

nario the skeleton is prestressed with nonzero T,. Here we
use p;=11.118 nm, L;=6.388 nm. Note that all these pa-
rameters are from Ref. [12]. Two different levels of prestress

are considered, Tp=—15 pN/um (following Ref. [12]) and

Ty=-30 pN/um (which provides best comparison with ex-
periments). Unless otherwise specified, for all the following
cases we use: N=19, L,=39 nm, p,=0.8 nm, AAx"
=12.6 nm, and F,=12 pN.

B. Cell stretching by optical tweezer

We test the model through comparisons with experimental
measurements of RBC deformability through optical twee-
zers. In this setup, an erythrocyte is stretched by two attached
beads, whose motions are optically controlled by laser
beams. In our model, the initial shape of the cell is biconcave
and is mathematically depicted as [39],

2

x+y2 X2+y2 x2+y2 2
= iOSRO 1——2 C1+C2 > +C3 B .
RO RO R()

(6)

where C,=0.21, C,=2.03, C3=-1.12, and Ry=3.91 um.
(x,y,z) is a Cartesian coordinate system with its origin lo-
cated at the centroid of the undeformed cell. As reported by
Dao et al. [33], the stretching force is applied by two silica
beads, which are attached at the opposite ends of the cell
over a small oval region with a diameter of 1-2 um [Fig.
5(a)]. In our simulation, this diameter is chosen to be
1.5 pm.

The force versus displacement curve is shown in Fig.
5(b). As we see, the model predictions match well with the
experimental measurements. The prestress cases are softer
than the stress-free case because the persistence length is

larger. The case with T,=—30 pN/um is a little bit stiffer

than the case with To=—15 pN/um. It also provides best
comparison with the experiment among the three cases.

C. Micropipette aspirations
1. Aspiration length vs pressure

We simulate the canonical micropipette aspirations and
obtain the correlation between the applied pressure and the
aspiration length L (i.e., the length of the cell sucked into the
pipette). In this simulation, a rigid cylindrical surface is em-
ployed to represent the pipette. The interaction between the
outer layer of the RBC and the pipette is simulated by using
a master-slave algorithm similar to the one used to study the
bilayer-skeleton interaction (see the Appendix). As indicated
in experiments [40], during the aspiration the membrane is
usually separated from the pipette by a small gap of fluid so
that the friction between them is insignificant and thus not
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FIG. 6. (a) Schematic of a micropipette aspi-
ration. (b) The aspiration length as a function of
o the applied pressure difference AP as compared
with the experiment [38] and the coarse-grained
model [12].
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(@)

considered in our model. We further simplify the fluid pres-
sure distribution inside the pipette as a uniform pressure dif-
ference AP applied on the cap region of the lipid bilayer and
a linear distribution along the aspiration length (the pressure
difference equals zero at the entrance).

Following Waugh and Evans [38], we study a flaccid, un-
swollen cell aspired from the dimple region [Fig. 6(a)]. The
initial shape of the cell is depicted by Eq. (6). The cell is
aspirated into a pipette with an inner radius R, of 0.668 wm.

In Fig. 6(b), it is seen that the normalized aspiration
length L/R,, depends almost linearly on the two-dimensional
pressure defined as APR,,/2. Also plotted in the figure are the
experimental measurements by Waugh and Evans [38] and
the results of the coarse-grained model by Discher et al.[12].
Good agreement is achieved with the coarse-grained model.

The prestress case with To=—30 pN/um provides the best
agreement with the experiment.

2. Skeleton density

To further test the capacity of our model, we use it to
study areal deformation of the skeleton and compare with
experimental measurements as well as predictions by the
coarse-grained model. The areal variation in the protein skel-
eton can be denoted as the density ratio p/ p, i.e., the density
of skeleton-attached proteins p normalized by its value p, in

18 |
16 \
14
12

(e
S 1
08 | >4
0.6 _ \'\,\
: Discher et al. 1998(Ty=-15pN/um) . NS
04 _ Stress-free = = >,
Prestress(T=-15pN/um) === )
021 Prestress(T=-30pN/pm)
-6 -4 -2 0 2 4 6 8
z/R
/ p
(@)

25 30

the undeformed state. This ratio is related to \; and \, by
p/po=1/(N|\y).

In Fig. 7(a) we plot the density profiles predicted by the
current model for stress-free and prestress cases, and com-
pare them with the reported result using the coarse-grained

model for prestress case with Ty=—15 pN/um [12]. In Fig.
7(b) we plot how the skeleton density changes with L/R), at
the cap and the entrance regions predicted by the prestress
case with T,=—30 pN/um, and compare it with experimen-
tal data by Discher er al. [41]. To match the setup utilized in
[12], in this particular simulation at the initial state the cell is
slightly swollen and its initial shape is depicted as a sphere
with diameter 5.34 um, while in all other simulations a flac-
cid biconcave shape as described in Eq. (6) is used as the
initial shape. The radius of the pipette is 0.668 wm. Based
upon the tendency demonstrated in Fig. 7, it is clear that our
prediction of the density profile is consistent with experi-
mental measurements [41], i.e., the skeleton is expanded
near the cap and compressed near the neck.

Figure 7(a) demonstrates that for the same prestress level

(Ty=—15 pN/um), the skeleton density of the cap region
predicted by our model is lower than that by the coarse-
grained model [12]. This is partially attributed to the fact that
in the coarse-grained model the deformed shape of the cell is
artificially assumed (perfect semisphere is assumed for the

251 Entrance(experiment) u

Cap(experiment) [ ]
o | Prestress(Ty=-30pN/um)

FIG. 7. (a) The density profile of the protein skeleton as predicted by the FEM model in comparison with the results obtained by using

a coarse-grained molecular dynamics model at L=8R,, [12]. (b) The skeleton density predicted by our model with Ty=—30 pN/pum

compared with experimental data [41].
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FIG. 8. (a) Distributions of contact pressure

cap), but in our model the deformed shape is directly com-
puted based on continuum mechanics. Although our com-
puted deformed shape is just slightly different from the as-
sumed shape by Discher et al., additional constraints usually
make the structure stiffer. The difference is also due to an-
other fact that at L/R,=8 the number of junctional com-
plexes is relatively small in the cap region where the surface
is curved so that the difference between our continuum de-
scription and the discretized description in the coarse-grained
model may be pronounced. Since in reality there are approxi-
mately 33 000 JCs in the cell while 18 434 JCs are consid-
ered in the coarse-grained model [12], the real density profile
should be between our result and that of the coarse-grained
model.

Figure 7(a) also shows that the prestress level influences
the skeleton density significantly. In fact, the accurate pre-
stress level, even the type of the prestress (precompression or
pretension), is still controversial [12,34,42]. In our following

simulations we use Ty=—30 pN/um, which matches the ex-
perimental data as shown in Fig. 7(b) [and also in Figs. 5(b)
and 6(b)].

As mentioned in the Appendix, in this case the initial
shape of the cell is spherical and it is thus impossible to
simultaneously conserve area and volume. Indeed, if we as-
sume that the cap area is semispherical and the part outside
of the pipette remains spherical during aspiration, it can be
geometrically proven that when the surface area is conserved
the volume loss in this case should be 27% as L=8Rp, a
value consistent with our numerical simulation.

For all simulations below we use the following param-
eters: pf:11.118 nm, Lf:6.388 nm, and 7_"0:—30 pN/ pum.
Through numerical simulations we have shown that this set
of parameters provides consistently good comparisons with
experiments in terms of cell deformations induced by mi-
cropipettes and optical tweezers, as well as density variations
in the protein skeleton during micropipette aspirations.

3. Contact force and the effect of Sp unfolding

Hereafter we concentrate upon the vertical contact force
between the two layers during the micropipette aspiration of
a cell from its biconcave state. Figure 8(a) displays the dis-
tributions of the contact pressure p,. between the two layers
during a micropipette aspiration with an applied pressure of
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and (b) distributions of contact force upon a JC.

256 pN/um?. By definition, a negative contact pressure re-
fers to a scenario in which the two layers are pulled apart
(dissociation tendency), and a positive contact force means
that the layers are pushed together (adhesion/association ten-
dency). It is seen that positive (association) contact pressure
is concentrated close to the entrance, and negative (dissocia-
tion) contact pressure exists mostly near the cap. This phe-
nomenon can be explained by considering the local curvature
of the inner layer: due to its own internal tension, the protein
skeleton is pulled away from the lipid bilayer at places where
it has a convex shape [Fig. 9(a)] and is pulled toward the
lipid bilayer at places where it is concave [Fig. 9(b)].

In our simulation, negative (dissociation) contact pressure
with peak value of about —130 pN/um? is recorded in the
area close to the cap. To relate the contact pressure p. to
mechanical loading on the molecular structure of the protein
skeleton, it is convenient to define a contact force per JC as
fic=p.A (i.e., the total contact force acting on the area cov-
ered by the hexagon formed by the six SCs in a JC). f;, takes
into account variations in the density distribution of the pin-
ning points between the protein skeleton and the lipid bi-
layer. The distribution of f;. along the cell is also plotted in
Fig. 8(b). It is seen that near the cap the decreased skeleton
density amplifies the concentration of dissociation force.

Sp unfolding may play an important role in determining
the skeleton density, and subsequently f., near the cap re-
gion. Unfolding will unstiffen the skeleton, causing larger
area expansion and thus increasing f;. even if p. remains
unchanged. To understand this effect, we recalculate the case
above by using a smaller F,,, (F;,=7.5 pN), which encour-
ages the occurrence of unfolding. In this case, since the Sp

(a) (b)

lipid bilayer
A\

%mjle;nt%

g A

FIG. 9. To overcome the effect of internal tension f inside the
protein skeleton, there must exist (a) negative (disassociation) con-
tact force between the protein skeleton and the lipid bilayer in lo-
cations with convex shape, or (b) positive (association) contact
force in locations with concave shape.

/r

7 lipid bilayer
7

T A

skeleton
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FIG. 10. FEM simulation of the necking process before vesicu-
lation (lipid bilayer in light color and skeleton in dark color).

domains will successively unfold under constant external
pressure (256 pN/um?), the skeleton will deform continu-
ously until structural failures happen, e.g., the skeleton-
bilayer dissociation. In practice we terminate the simulation
when the deformation reaches L/R,=12. As shown in Fig.
8(b), with F,,=7.5 (and the same aspiration pressure) the
unfolding effect greatly increases the magnitude of f;. near
the cap area, which may increase the possibility of vertical
skeleton-bilayer dissociation. Consequently, our simulation
suggests that F;, (which is not considered in any other mod-
els) is a key parameter in RBC remodeling, which deserves
dedicated experimental investigation.

4. Postdissociation behavior—necking

In the previous section, we studied the contact force be-
tween the two layers before the dissociation. Our model is
also capable of exploring the subsequent response after
skeleton/bilayer dissociation. When the negative pressure in
micropipette aspiration is sufficiently high, a vesicle will be
separated from the cell. A vesicle is an entity formed by part
of the cell membrane which is deficient in skeleton proteins
such as band 3 [16], suggesting a scenario wherein its for-
mation is caused by the skeleton separating from the lipid
bilayer. It was observed in experiments that before a vesicle
is created a region of reduced caliber, i.e., a neck, was
formed in the middle section between the cap and the en-
trance [16]. The location of the neck may appear to be at
odds with the fact the skeleton-bilayer dissociation should
first occur close to the cap, where the maximum dissociation
force occurs.

To shed light on this phenomenon, we simulate the post-
dissociation behavior by assuming that the two layers sepa-
rate when the magnitude of the dissociation force per JC

reaches a critical value ij=20 pN for the case with Fy),
=7.5 pN in the previous section. We note that the choice of

fjc does not affect the qualitative simulations that follow.
However, further experiments are required to pinpoint its ex-
act value. As shown in Fig. 10(b), the separation is first ob-
served in the cap region, consistent with the distribution of
the dissociation force. Subsequently in Fig. 10(c), when the
skeleton network shrinks to certain extent, a separation
between the lipid bilayer and the pipette inner surface be-
gins, which eventually leads to formation of a neck [Fig.
10(d)]. The tendency for necking is primarily due to two
factors: (1) after the separation, the resultant force applied
on the bilayer is significantly increased. For a cylindrical
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tether of lipid bilayer, Waugh and Hochmuth [43] showed
that fo=2mk./R,, where f is the resultant force applied on
the tether, R, is the radius of the cylindrical tether and k.. is
the bending stiffness. For the lipid bilayer part without skel-
eton in Fig. 10(c), we can also qualitatively apply this rela-
tion. When f, is increased, R, (here R, is the radius of the
cylindrical bilayer part) must decrease and it may lead to
necking; (2) the skeleton at the cap region is significantly
expanded before separation. After separation, it tends to con-
tract, generating a large pulling force on the lipid bilayer in
the radical direction toward the center of the pipette, which
encourages the necking of the bilayer.

We also found that under the aforementioned conditions
(i.e., external pressure of 256 pN/um? and F,,=7.5 pN)
the skeleton/bilayer dissociation occurs before Sp unfolding

only if fjc< ~4.0 pN, otherwise the separation occurs after
Sp unfolding. Therefore, Sp unfolding may play a critical
role in skeleton/bilayer separation. Additional experiments
(especially the experiments to determine key parameters

such as ]7” and F,,) are necessary to illustrate the role of Sp
unfolding on skeleton/bilayer separation.

It is necessary to point out that this simulation is qualita-
tive rather than quantitative—to accurately capture the dy-
namic separation process an accurate evaluation of the damp-
ing matrix C (see the Appendix) is required. This matrix
summarizes the effect of the viscosity of the lipid bilayer and
the protein skeleton, the friction between these two, and the
effects of the surrounding fluid. Studies in this direction are
underway and will be included in future reports.

V. CONCLUSIONS AND DISCUSSION

By using a multiscale modeling technique we have quan-
titatively studied the resting shape of erythrocyte, the quasi-
static mechanical response prompted by mechanical loads, as
well as the interaction force between the protein skeleton and
the lipid bilayer. The primary purpose of this study is to build
a framework for understanding erythrocyte mechanics upon
which new knowledge from future experiments can be incor-
porated. Such a model analysis will also help us design new
experiments to illustrate the exact mechanisms of mechani-
cally induced membrane morphological changes, and to
achieve quantitative predictions of the occurrence of remod-
eling (such as vesiculation) of normal or defected erythro-
cytes.

Compared with existing models of the RBC membrane
[4,12,44,45], our model has the following characteristics: (1)
our multiscale approach not only delivers accurate predic-
tions of complete cell response (due to the involvement of
the detailed molecular structure and responses at different
levels), but also allows us to address physical mechanisms at
different length scales and to correlate mechanical loads on
the cell with detailed stress distributions within the compos-
ite structure. This model has predicted phenomena that had
never been found by other models (e.g., bifurcation, mode
switching, and stress-induced unstiffening due to unfolding)
[8,31]; (2) our model explicitly incorporates the local inter-
actions between the skeleton and the bilayer, as well as the

031904-8



MULTISCALE SIMULATION OF ERYTHROCYTE MEMBRANES

inter- and intramolecule interactions inside the skeleton; (3)
this model is inherently dynamic and capable of studying
time-dependent responses at different length scales.

One possible application of this model is the prediction of
the critical contact force between the lipid bilayer and the
protein skeleton that triggers dissociation, leading to physi-
ologically important phenomena such as vesiculation and
tether formation. Among the existing experiments, observa-
tions of tether formations from erythrocytes inside flow
channels (see for example [46]) or induced by cantilevers
[6,17] provide the only measure to quantitatively predict this
critical dissociation process. In a typical flow channel setup,
erythrocytes are allowed to sediment inside a channel con-
sisting of two parallel plates. The substrate is coated with
bovine serum albumin (BSA) so that most cells do not ad-
here to the bottom with large attaching areas. When external
flows are introduced the cells deform while one (in some
cases more than one) point remains attached to the substrate.
Long membrane strands (tethers) may appear when the flu-
idic shear surpasses a threshold value (~1.5 dyn/cm?, or
0.15 pN/um?) [46]. Although it is possible to duplicate de-
formations of the erythrocyte inside the flow channel and
extract the contact force by using our model, these simula-
tions suffer from uncertainties about the location and the
detailed configuration of the contact area between the cell
membrane and the substrate. In this context, the accuracy of
a continuous complete cell model is also questionable due to
the small size of the contact area between the cell and the
substrate. A better approach will be to simulate a set of sys-
tematic micropipette aspirations by slowly increasing the
negative pressure inside the pipette (to enforce the quasistatic
condition) until vesiculation occurs. On the other hand, tan-
gential forces between the skeleton and the bilayer associated
with dynamic mechanisms may play an important role in the
dissociation process (see for example, the tether formation
experiments reported by Borghi and Brochard-Wyart [47]).
To take this into account, it is critical to simulate the time-
dependent viscoelastic behavior, rather than the quasistatic
response, of the cell.

Other improvements of the model are also required.
Rather than a rough view of total vertical loads on each JC
achievable by our current model, a detailed distribution of
mechanical loads among various skeleton-bilayer pinning
points, as well as mechanical load on each interprotein or
protein-to-lipid connection are needed. A possible measure to
achieve these is by concurrent multiscale models. For ex-
ample, by modeling in molecular detail a piece of the skel-
eton while representing the rest of the skeleton as continuum
shell, we will be able to relate lateral tension inside the pro-
tein skeleton to forces on the connection points. Besides Sp
unfolding, other processes such as dissociation of Sp head-
to-head linkages may also play important roles in determin-
ing structural responses of the cell in large deformations [9].
For comprehensive modeling these mechanisms should also
be considered. In addition, more sophisticated thermal fluc-
tuation model and fluid-skeleton-bilayer interaction model
are required to accurately study close-coupling between the
skeleton and the bilayer [48].
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APPENDIX: FINITE ELEMENT FORMULATIONS

Numerically, we employ the finite element method to
solve the mechanical response of the continuum shells in the
complete cell model. The development of this finite element
model is summarized below.

For nonlinear solid mechanics problem in small length
scales (i.e., the inertia effect is negligible), the momentum
equation governing the mechanical response of either one of
these layers can be stated with updated Lagrangian descrip-
tion as

c—-V.0=0, (A1)
ot
with boundary conditions
u=g on I'P
-n=f on [N (A2)

O -n=f" on [N

where c is the viscous damping coefficient. u is the displace-
ment vector. V is the spatial gradient operator. is the
Cauchy stress. I'? is the Dirichlet part of the boundary. I'***V
is the Neumann part of the boundary where external forces
are applied. I'“**V is the Neumann part of the boundary
where contact interaction forces are applied. n is the normal
vector to the surface. f* represents the external forces (e.g.,
the pressure force inside a micropipette). "' is the contact
force between the two layers, and between the outer layer
and boundaries (e.g., micropipettes). g is the specified dis-
placements on the boundary. Generally speaking, c, ©, f,
f<"!, and g are functions of u, v, and ¢, where v=du/dt is the
velocity.

We model both the outer layer (the lipid bilayer) and the
inner layer (the protein skeleton) as congregations of shell
elements. Although the C'-conforming thin shell elements
are more accurate [49] (also see [13,14] for an application of
this method to model the lipid bilayer), for simplicity and
numerically robustness, in our current study we choose the
C? explicit Hughes-Liu elements [50]. In some special cases,
e.g., aspiration of an erythrocyte into a cylindrical micropi-
pette from its dimple region, the configuration is axisymmet-
ric so that axisymmetric Hughes-Liu shell elements can be
employed to reduce computational effort.

After finite element discretization (detailed formulation of
this method can be found in [50] and axisymmetric formula-
tion can be found in [51]), the governing Eq. (Al) is re-
expressed in matrix form as

Cv, + 10 = f 4 £, (A3)

where C is the assembled damping matrix. In this study, we
concentrate upon quasistatic cases so that C is a numerical
parameter which affects the convergence via dynamic relax-
ation but not the final result. Specifically, we use a lumped
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damping matrix based on row-sum technique [52]. v, repre-
sents the assembled velocity vector. fgx’ is the global external
force vector and £’ is the global contact force vector. f;’” is
the global internal force vector related to constitutive equa-
tions. Based upon Eq. (A3), the configuration of the thin

layer is updated via a forward Euler algorithm.

1. Constitutive equations

To close our finite element formulations, we relate the
in-plane components of stress ® with the deformation via the
constitutive law provided by Evans and Skalak [32]. For the
inner layer (skeleton network), we use

b, +b
Mﬁj), i,j=1,2. (A4)

mo M

J=|21 2§| is the in-plane Jacobian, where F; (i,j=1,2) are
the deformation gradients [53]. b,-j=22=1F «F . are compo-
nents of the in-plane left Cauchy-Green deformation tensor.
T and u, are the isotropic tension and the shear modulus,
which are defined in Egs. (3) and (4). / is the thickness of the
shell.

For the outer layer (lipid bilayer), since it is nearly incom-
pressible, we use

3 by +by

5"’ .7.=1’2’
b

(A5)

M,

where K,=5>% 10> pN/um is the area modulus of the outer
layer. Although the outer layer is a fluidic and its shear
modulus is nearly zero, for numerical stability we choose a
small but nonzero value. In practice this value is chosen to
be three orders of magnitude smaller than the shear modulus
of the inner layer. Through sensitivity tests it has been shown
that its actual value has no influence upon the results.
Finally, we update the transverse shear stresses ®,; and
®3, by using the linear elastic model expressed as
0231 = Gy,

03, =Gy, (A6)

where 7,3 and y3; are the relevant strain rates related to the
local deformation. G is the transverse shear stiffness (differ-
ent for the inner layer and the outer layer). In our model,
since both the inner layer and the outer layer are very thin,
the transverse shear should be negligibly small. We find that
as long as the transverse shear stiffness is sufficiently large,
its actual value has no influence on the results.

2. Bending stiffness and spontaneous curvature

Considering a shell with thickness / described by Evans
and Skalak [32], its bending stiffness k. and area modulus K
are related by

+h/2 2
K Kh
J g (A7)

‘ —h/2 h 12 .

This formula is implied in the previous finite element formu-
lation. For the lipid bilayer, we use #=2.2 nm and K=K,
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=5X10° pN/um (see Sec. Il C), then k,=2X 107'° J. This
is the same as the value used in [19]. It is also within the
range of the reported bending stiffness (from 4 X 1072 to 3
X 1071 1) [6,12,19,54-56]. The discrepancy between the bi-
layer thickness used herein and its actual value (4—5 nm) is
attributed to the fact that in our study the bilayer is simplified
as a continuous (but anisotropic) shell without considering
its detailed molecular architecture.

The bending stiffness of the protein skeleton is negligibly
small (experiments show that the persistence length of a Sp
is only around O(1) nm [24], indicating that it has a small
bending stiffness). It is found that if its thickness & is chosen
to be comparable to that of the bilayer (in our simulations we
choose k=2 nm), this characteristics can be duplicated in
our model. For example, with small deformations a typical
value of the area modulus of the skeleton is around
20 pN/um, leading to a bending stiffness of 6.67
X 1072* J, which is five orders of magnitude smaller than
that of the lipid bilayer.

In its free state the lipid bilayer may also possess a spon-
taneous curvature C,, referring to the naturally formed cur-
vature of a free patch of bilayer [57]. To account for it, we
replace the deformation gradient tensor F, defined as

Fiy Fip Fi3
Fy Fyp Faf,
F3 F3 Fi3

with I:‘f, where F is the deformation gradient caused by

external loading and F is the initial deformation gradient
caused by the spontaneous curvature, which is defined ini-
tially before the simulation.

3. Interaction between outer layer and inner layer

The interaction between the outer layer and the inner
layer in the vertical direction is modeled as uniformly dis-
tributed penalty springs. Tangentially, the two layers are al-
lowed to slide viscously against each other (herein the exact
magnitude of the viscous drag in the tangential direction ren-
dered by the mobility of the transmembrane proteins band 3
and glycophorin C is irrelevant since we consider quasistatic
cases through dynamic relaxation). A master-slave penalty
contact formulation is employed [58]. The outer layer is
treated as the master surface and the nodes on it are called
master nodes, whereas the inner layer is considered as the
slave surface and the nodes on it are called slave nodes. All
the slave nodes are projected to the master surface, and the
distances between the slave nodes and the master surface are
calculated. The contact stress depends linearly upon these
distances with a penalty stiffness. The contact force, defined
as the contact stress times the area of the element, is distrib-
uted to the slave nodes and the master nodes. The penalty
stiffness is tested numerically so that it is sufficiently large to
enforce the contact constraint accurately, and small enough
so that it does not introduce numerical instability during time
integration.
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4. Cell volume conservation
The internal volume of the cell is conserved through the
following penalty algorithm

APi= —kUAV, (A8)

where AV is the volume change of the cell and AP; is
the internal pressure against this change. AP; is uniformly
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distributed upon the outer layer. A large penalty parameter k,
enforces volume conservation so that in all of our simula-
tions the volume change is less than 3%. One exception is
the deformation of a cell from a spherical shape. With the
overall surface area fixed, a sphere encloses the maximum
possible volume and it is impossible to deform it without
volume loss.
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